ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ НАУЧНОЕ УЧРЕЖДЕНИЕ «НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ПО ИЗЫСКАНИЮ НОВЫХ АНТИБИОТИКОВ имени Г.Ф. ГАУЗЕ» (ФГБНУ «НИИНА»)

«УТВЕРЖДАЮ» Директор ФГБНУ, чл.корр. РАН, профессор А.А.Фирсов «29, жито 2015 г

Рабочая программа

подготовки научно-педагогических кадров высшей квалификации по дисциплине

СПЕКТРАЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Направление подготовки:

04.06.01 ХИМИЧЕСКИЕ НАУКИ

Направленность (профиль):

02.00.10 Биоорганическая химия

Квалификация (степень):

Исследователь, Преподаватель - исследователь

Нормативный срок обучения – 4 года Форма обучения – очная

Москва-2015

Научная специальность: 02.00.10 «Биоорганическая химия

Цикл дисциплин (по учебном	у плану): Б.1.В.ДВ.2.
Курс:	
Трудоёмкость 5 зачетные ед	циницы
Трудоёмкость 180 часов	
В том числе: Лекции: 72 часа Практические и семинарск	сов на дисциплину: 108 часов сие занятия: 36 часов гоятельную работу: 72 часов
органических соединений» образовательного стандарта квалификации 04.06.01 X	иплины Б.1.В.ДВ.2. «Спектральные методы исследования составлена на основании федерального государственного высшего образования по направлению подготовки кадров высшей имические науки, утвержденного приказом Министерства ской Федерации от 30.07.2014 №869 по специальности 02.00.10
Разработчик:	
Д.х.н., доцент	А.Е. Щекотихин
Рецензент:	
д.х.н.	А.М.Королев
Программа одобрена Учены	м советом
Протокол №	
«»	2015
Заведующий аспирантурой	В.И. Пономаренко

1. Цели и задачи освоения дисциплины

Цели дисциплины: Формирование компетенций в области основных спектральных методов установления состава и строения органических соединений, формирование навыков к самостоятельной работе с приборной и аналитической базой физико-химических методов анализа, компьютерным парком и базами данных.

Задачи дисциплины:

- Сформировать базовые знания об инструментальных методах химического анализа необходимые для выполнения научно-исследовательской работы.
- Ознакомить обучающихся с основами важнейших современных физико-химических методов анализа.
- Рассмотреть основные экспериментальные закономерности физико-химических методов исследования и установления структуры органических соединений;
- Сформировать у обучающихся навыки и умения расшифровки спектров (УФ, ИК- ЯМР, масс-) органических и элементоорганических соединений соединений, установления строения соединений по совокупности их спектров.
- Обеспечить овладение методологией применения физико-химических методов исследований в биоорганической химии.

2. Место дисциплины в структуре ООП

Настоящая дисциплина «Спектральные методы исследования органических соединений» - модуль основной профессиональной образовательной программы высшего образования — программы подготовки научно-педагогических кадров в аспирантуре по направлению подготовки 04.06.01 — Химические науки по специальности 02.00.10 - Биоорганическая химия. Обучающийся по данной дисциплине должен иметь фундаментальные представления по органической и физической химии. Для изучения данной дисциплины необходимо высшее образование с освоением курсов органической и физической химии для химических специальностей.

3. Требования к результатам освоения дисциплины

В рамках данной дисциплины углубляются и развиваются следующие компетенции: Универсальные компетенции:

- Способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях (УК-1);
- способность проектировать и осуществлять комплексные исследования, в том числе междисциплинарные, на основе целостного системного научного мировоззрения с использованием знаний в области истории и философии науки (УК-2);
- Готовность участвовать в работе российских и международных исследовательских коллективов по решению научных и научно-образовательных задач (УК-3);
- Способность планировать и решать задачи собственного профессионального и личностного развития (УК-5).

Общепрофессиональные компетенции:

• способность самостоятельно осуществлять научно-исследовательскую деятельность в биоорганической химии с использованием современных методов исследования и информационно-коммуникационных технологий (ОПК-1).

Профессиональные компетенции:

- обладание представлениями о системе фундаментальных химических понятий способностью использовать научную методологию исследования: знания современных теоретических и экспериментальных методов исследования с целью создания новых биологически активных соединений, их практическому использованию и внедрению результатов исследований, основ планирования эксперимента, методов математической обработки данных (ПК-1);
- способностью и готовностью формулировать цели и задачи научных исследований в соответствии с современными тенденциями и перспективами развития биоорганической химии и смежных наук, обоснованно выбирать теоретические и экспериментальные методы и средства решения сформулированных задач (ПК-2);
- способностью и готовностью использовать навыки самостоятельного сбора данных, изучения, комплексного анализа и аналитического обобщения научной информации и результатов научно-исследовательских работ в области биоорганического синтеза, медицинской химии, идентификации органических соединений и установления их строения (ПК-3);
- способностью и готовностью формулировать научно-обоснованные выводы по результатам исследований, участвовать в научных дискуссиях, выступать с докладами и сообщениями по тематике проводимых исследований, готовить научные публикации, методические

- рекомендации и заявки на изобретения; составлять заявки на гранты; поддерживать высокий уровень публикационной активности (ПК-4);
- способностью разрабатывать схемы получения и модификации биологически активных веществ; использовать физико-химические методы для контролирования протекания синтеза, свойств сырья и продукции; к реализации систем менеджмента контроля качества продуктов биоорганического синтеза в соответствии с требованиями российских и международных стандартов качества; применять полученные знания, умения и навыки для управления химическими процессами (ПК-5).
- владение основными синтетическими и аналитическими методами получения и исследования веществ и реакций (ПК-6).

Компетенции по видам деятельности:

научно-исследовательская деятельность:

- способность предлагать пути решения, выбирать методику и средства проведения научных исследований в области химии;
- способность применять методики разработки математических и физических моделей исследуемых процессов, явлений и объектов в области органической химии;
- способность планировать и проводить эксперименты в области химии, обрабатывать и анализировать их результаты;
- готовность к работе на современном научном оборудовании для физико-химических исследований органических и элементоорганических соединений;
- способность подготавливать публикации, научно-технические отчеты, обзоры по результатам выполненных исследований в области химии.

В результате освоения дисциплины аспирант или соискатель должен:

- знать:

- иметь представление о физические основы методов ультрафиолетовой, инфракрасной спектроскопии, спектроскопии ядерного магнитного резонанса и масс-спектрометрии;
- представлять возможности современных спектральных методов в решении химических проблем;

– уметь:

- проводить структурный анализ органических соединений по данным УФ, ИК, ЯМР и масс-спектрометрии.

- владеть:

- навыками регистрации УФ и ИК органических соединений;
- способами представления спектральных данных в научной литературе

- синтезировать:

- разрабатывать методологию проведения спектрального анализа для установления структуры органических соединений;
- составлять спектральные базы данных органических соединений;

- анализировать:

- устанавливать структуру органических соединений по УФ, ИК, ЯМР и масс-спектрам.
- выявлять соответствие данных УФ, ИК, ЯМР и масс-спектрометрии структуре органических соединений;

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 5 зачетных единиц (180 часов). Дисциплина изучается на 2-м году аспирантуры. Дисциплина состоит из 5 разделов.

4.1. Структура дисциплины

4.1.1. Разделы дисциплины и виды занятий

NG.	Наименование Раздела	Объем учебной работы (в часах)						Вид	
№ п/п		Bcero	Всего	Из аудиторных		КСР	Сам.	итогового	
11/11			аудит	Лекц.	Лаб	Прак	KCr	работа	контроля
1	Введение	8	4	4	0	0	0	4	
2	Электронная спектроскопия	26	16	10	0	4	2	10	
3	Инфракрасная спектроскопия	36	22	14	0	6	2	14	
4	Ядерный магнитный резонанс	48	30	18	0	10	2	18	
5	Масс-спектрометрия.	46	28	18	0	8	2	18	
6	Методология выделения и анализа биомолекул	16	8	8	0	0	0	8	
	Итого	180	108	72	0	28	8	72	Зачет

4.2. Содержание дисциплины

№	Наименование	Содержание раздела (темы)	Форма
п/п	раздела		проведения
	дисциплины		занятий
1	Введение	Спектральные методы анализа. Понятие	Лекции,
		спектральных методов анализа, их	самостоятельная
		классификация. Эмиссионная и	работа
		абсорбционная спектроскопия. Принципы	
		действия и блок-схемы приборов.	
		Энергетический диапазон электромагнитного	
		излучения. Рентгеновская, оптическая (УФ-,	
		видимая, ИК-), микроволновая, радиочастотная	
		(ЭПР, ЯМР) спектроскопии, характер	
		возбужденного состояния атомов и молекул в	
		различных энергетических диапазонах	
2	Электронная	Физические основы метода: электронные	Лекции,
	спектроскопия	состояния молекул, классификация электронных	практические
		переходов в молекулах, правила отбора.	занятия,
		Классификация полос. Взаимосвязь электронных	самостоятельная
		спектров и структуры органических молекул:	работа.
		хромофоры и ауксохромы, сопряжение	
		хромофоров, неспецифическое и специфическое	
		влияние растворителей, батохромный и	
		гипсохромный сдвиги, гипохромный и	
		гиперхромный эффекты, классификация полос	
		поглощения в электронных спектрах.	
		Поглощение важнейших ауксохромных и	
		хромофорных групп. Избирательное поглощение	
		важнейших ауксохромных и хромофорных групп:	
		насыщенные гетероатомные ауксохромы,	
		карбонильный хромофор, диеновый хромофор,	
		еноновый хромофор, бензольный хромофор,	

		правила Вудворда-Физера. Прицип работы УФ	
		спектрофотометра. Условия измерения УФ	
		спектров. Типы задач и возможности УФ –	
		спектроскопии применительно к	
		элементоорганическим соединениям:	
		идентификация, количественный анализ,	
		выявление сопряжения. Примеры структурного	
		анализа ненасыщенных органических	
		соединений по спектру поглощения в ближней	
		области УФ спектра.	
3	Инфракрасная	Физические основы метода: частота и	Лекции,
	спектроскопия	интенсивность поглощения в колебательных	практические
		спектрах двухатомных молекул, основные	занятия,
		колебания многоатомных молекул. Взаимосвязь	самостоятельная
		инфракрасных спектров и структуры	работа.
		органических молекул: валентные и	
		деформационные колебания, характеристичность	
		колебаний и ее физические причины, факторы,	
		вызывающие сдвиг полос поглощения и	
		изменение их интенсивности.	
		Характеристическое поглощение важнейших	
		структурных фрагментов и функциональных	
		групп органических соединений.	
		Характеристическое поглощение важнейших	
		структурных фрагментов и функциональных	
		групп органических соединений: С-С, С=С, С≡С,	
		Саром-Саром, Сsp3-H, Сsp2-H, Сsp-H, С-O, С-	
		N, O–H, N–H, S–H, C=O, CHO, COOH, COOR,	
		COHal, NO2, С≡N. Структурные области ИК	
		спектра. Принципы отнесения полос поглощения.	
		Последовательность проведения структурного	
		анализа. Количественная ИК спектроскопия.	
		Принцип работы ИК спектрофотометра. Условия	

		измерения ИК спектров. ИК-спектрометры с	
		преобразованием Фурье. Типы задач и	
		возможности ИК - спектроскопии: отнесение	
		полос, сопоставление спектра и строения	
		вещества, идентификация, функциональный	
		анализ. Примеры структурного анализа	
		органических соединений по ИК спектру	
		(область 4000 – 650 см-1).	
4	Ядерный	Физические основы метода: магнитные свойства	Лекции,
	магнитный	ядер, основное уравнение ядерного магнитного	практические
	резонанс	резонанса, взаимодействия магнитных моментов	занятия,
		ядер (тонкая и сверхтонкая структура сигналов	самостоятельная
		ядер). Выбор резонансного ядра при изучении	работа.
		строения органических соединений. Принцип	
		работы ЯМР спектрометра, представления о	
		Фурье-преобразовании, регистрация спектров.	
		Представление о химическом сдвиге. Спин-	
		спиновое взаимодействие. Анализ спектров	
		ядерного магнитного резонанса ядер со	
		спиновым квантовым числом I=1/2: химическая	
		и магнитная эквивалентность ядер,	
		номенклатура ядерных систем, А2, АХ, АВ и	
		А2В системы, индекс связывания, спектры	
		первого и второго порядка, основные правила	
		анализа спектров первого порядка,	
		расшифровка простейших спектров второго	
		порядка, приемы упрощения сложных спектров.	
		Спектроскопия ¹ Н ЯМР: шкала химических	
		сдвигов протонов, их характеристичность,	
		закономерности в изменении значений	
		химических сдвигов; константы спин-	
		спинового взаимодействия ЈН – Н. Двойной	
		резонанс. Спектроскопия ¹³ С ЯМР: шкала	
		химических сдвигов ядер ¹³ С, их	

		характеристичность, закономерности в	
		изменении значений химических сдвигов,	
		константы спин-спинового взаимодействия ЈС-	
		Н, полное и частичное подавление спин-	
		спинового взаимодействия ядер 13С и протонов.	
		Ядерный эффект Оверхаузера. Понятие о	
		спектроскопии ядерного магнитного резонанса	
		динамических систем (обменные процессы).	
		Спектры ЯМР на ядрах ³¹ Р, ¹⁹ F. Приготовление	
		образцов для ЯМР-спектроскопии.	
		Корреляционная спектроскопия ЯМР	
		(одномерная и двумерная, COSY, HMQC, HSQC,	
		HMBC, INADEQUATE. Ядерный эффект	
		Оверхаузера (природа и применение для анализа	
		динамических процессов). Примеры	
		структурного анализа органических соединений	
		по спектрам ¹ Н и ¹³ С ЯМР. Определения	
		строения биоорганических соединений по	
		спектру ЯМР.	
5	Macc-	Физические основы метода: принцип работы	Лекции,
	спектрометрия	масс-спектрометра, его разрешающая сила,	практические
		образование масс-спектра, основное уравнение	занятия,
		масс-спектрометрии, типы регистрируемых	самостоятельная
		ионов (молекулярные, осколочные,	работа.
		метастабильные, многозарядные).	
		Классификация масс-спектрометрических	
		приборов. Поведение заряженных частиц в	
		электрических и магнитных полях: продольное	
		и поперечное электростатическое поле,	
		продольное и поперечное магнитное поле.	
		Различные методы ионизации (электронный	
		удар, химическая ионизация, химическая	
		ионизация при атмосферном давлении,	
		индуктивно-связанная плазма). Методы	
	1	l .	i

ионизации соединений с высокой молекулярной массой и высокомолекулярных соединений (полевая десорбция (FD), химическая ионизация (CI), электроспрей (ES), матричная лазерная десорбционная ионизация (MALDI)). Методы разделения и регистрации ионов. Интерпретация масс-спектров, полученных с использованием разяных методов ионизации. Определение молекулярной бруттоформулы по масс-спектру: метод точного измерения масс молекулярных ионов, метод измерения интенсивностей пиков ионов, изотопных молекулярному иону. Качественные теории масс-спектрометрии органических соединений: теория локализации заряда, теория устойчивости продуктов фрагментации. Массспектрометрические правила: азотное, "четноэлектронное", затрудненный разрыв связей, прилежащих к ненасыщенным системам. Основные типы реакций распада органических соединений под электронным ударом: простой разрыв связей (α-разрыв, бензильный и аллильный разрывы), ретро-реакция Дильса-Альдера, перегруппировка Мак-Лафферти, скелетные перегруппировки, ониевые реакции. Установление строения органических соединений: метод функциональных групп, метод характеристических значений m/z. Основные направления фрагментации органических соединений под электронным ударом (углеводородов и их галогенпроизводных, спиртов, фенолов, простых эфиров, альдегидов, кетонов, аминов, карбоновых кислот и их производных).

		Термические реакции в масс-спектрометре.	
		Примеры фрагментации сложных органических	
		соединений. Примеры структурного анализа	
		органических соединений по масс-спектру	
		низкого разрешения. Перегруппировка Мак-	
		Лафферти. Использование баз данных и	
		библиотек масс-спектров для структурного	
		анализа.	
6	Методология	Основные методические приемы, используемые	Лекции,
	выделения и	для выделения биомолекул. Способы разрушения	семинары,
	анализа	тканей и клеток, экстракция. Теоретические	самостоятельная
	биомолекул	основы хроматографии и электрофореза,	
	оиомолекул		работа.
		разновидности этих методов и их использование	
		для препаративного выделения, количественного	
		определения и анализа чистоты исследуемых	
		соединений. Масс-спектрометрия, схема прибора,	
		способы введения образца, методы ионизации,	
		детекция ионов, применение масс-спектрометрии	
		для исследования отдельных классов природных	
		соединений. Оптическая спектроскопия,	
		структурные проблемы, для решения которых	
		используются ИК- и КР-спектры, спектры	
		поглощения в видимой и ультрафиолетовой	
		областях, Дисперсия оптического вращения и	
		круговой дихроизм. Рентгеноструктурный анализ	
		биополимеров. Электронная микроскопия	
		биологических объектов. Способы введения	
		спиновых меток и исследование биомолекул с	
		помощью спектроскопии ЭПР. Спектроскопия	
		ЯМР и ее использование для установления	
		строения сложных природных соединений,	
		включая биополимеры. Компьютерное	
		моделирование молекулярной механики и	
		молекулярной динамики биомолекул.	

5. Образовательные технологии

Освоение программы предусматривает аудиторные занятия (лекции, семинары и практические работы), включающие интерактивные формы освоения учебного материала и самостоятельную работу, связанную с применением спектральных методов для решения проблем диссертационного исследования. Для повышения усвоения материала лекции сопровождаются визуальным материалов в виде слайдов, подготовленных с использованием современных компьютерных технологий (программный пакет презентаций Microsoft Office Powerpoint), проецируемых на экран с помощью видеопроектора, а также результатов компьютерного моделирования физико-химических процессов. Практические работы проводятся спектральных лабораториях на современных спектрах приборах В использованием специального программного обеспечения и интернет-ресурсов с участием обучаемых в научной работе и выполнении исследовательских проектов.

Виды самостоятельной работы: в домашних условиях, в библиотеке, на компьютерах с доступом к базам данных и ресурсам Интернет, в лабораториях с доступом к лабораторному оборудованию и приборам. Самостоятельная работа подкрепляется учебно-методическим и информационным обеспечением, включающим учебники, учебно-методические пособия, конспекты лекций, учебное и научное программное обеспечение. В ходе самостоятельной работы проводится анализ литературных данных, составление подборки статей из научных журналов по применению различных спектральных методов для идентификации биоорганических соединений.

6. Фонд оценочных средств для оценки освоения дисциплины «Биоорганическая химия»

Типовые задания для самостоятельной работы

Подготовка обзора литературы по применению методов масс-, ИК, УФ и ЯМР- спектроскопии для идентификации и исследования строения биоорганических соединений.

Аттестация:

- а) Текущая аттестация выполнение 4 контрольных работ по основным разделам дисциплины
- б) Итоговая аттестация по результатам выполнения зачетной работы

6.1 Вопросы для зачетной работы

- 1. Физико-химические основы метода УФ-спектроскопии: электронные состояния молекул, классификация электронных переходов в молекулах, правила отбора
- 2. Взаимосвязь электронных спектров и структуры органических молекул: хромофоры и ауксохромы, сопряжение хромофоров. Классификация полос поглощения в электронных спектрах
- 3. Цветность соединений, правила Вудворда—Физера, Степанова. Влияние растворителей в УФ-спектроскопии: батохромный и гипсохромный сдвиги, гипохромный и гиперхромный эффекты.
- 4. Физические основы метода ИК-спектроскопии: частота и интенсивность поглощения в колебательных спектрах двухатомных молекул, основные колебания многоатомных молекул.
- 5. Взаимосвязь инфракрасных спектров и структуры органических молекул: валентные и деформационные колебания, характеристичность колебаний и ее физические причины, факторы, вызывающие сдвиг полос поглощения и изменение их интенсивности.
- 6. Характеристическое поглощение важнейших структурных фрагментов и функциональных групп органических соединений.
- 7. Физические основы метода ЯМР-спектроскопии: магнитные свойства ядер, основное уравнение ядерного магнитного резонанса, взаимодействия магнитных моментов ядер.
- 8. Спектроскопия ¹Н ЯМР: шкала химических сдвигов протонов, их характеристичность, закономерности в изменении значений химических сдвигов; константы спинспинового взаимодействия J H-H.
- 9. Спектроскопия ¹³С ЯМР: шкала химических сдвигов ядер ¹³С, их характеристичность, закономерности в изменении значений химических сдвигов, константы спинспинового взаимодействия ЈС–Н, полное и частичное подавление спин-спинового взаимодействия ядер 13С и протонов.
- 10. Физические основы метода масс-спектроскопии: принцип работы масс-спектрометра, его разрешающая сила, образование масс-спектра, основное уравнение масс-спектрометрии, типы регистрируемых ионов.
- 11. Методы ионизации в масс-спектрометрии. Методы разделения и регистрации ионов.
- 12. Основные типы реакций распада органических соединений под электронным ударом. Масс-спектрометрические правила: азотное, "четно-электронное", затрудненный разрыв связей

6.2. Примерный перечень фонда оценочных средств для оценки компетенций при аттестации аспирантов по дисциплине «Биоорганическая химия»

- Реферат
- Сообщение
- Доклад
- Разноуровневые задачи и задания

Тема доклада (сообщения, реферата):

«Комплексный анализ оригинальной экспериментальной работы в области биоорганической или медицинской химии»

Примерный перечень статей:

- o J. Med. Chem., Article ASAP DOI: 10.1021/acs.jmedchem.5b01343
- o J. Med. Chem., Article ASAP DOI: 10.1021/acs.jmedchem.5b00857
- o J. Med. Chem., 2015, 58 (20), 7938–7948
- o Letters in Drug Design & Discovery, 2009, 6, 51-55
- o Bioorg. Med. Chem. Lett., **2001**, 635

Примерный перечень заданий:

В докладе (сообщении, реферате) представьте результаты анализа и решение следующих задач:

- На основе прочитанной статьи сделайте заключение об основных результатах, достигнутых в описываемых работах, выделите структуру с наибольшей биологической активностью (УК-1, ПК-1).
- Провести анализ спектральных методов исследования, применяемых в отношении исследуемого класса соединений (УК-1, ПК-1).
- Сделайте вывод о том, насколько методы исследования, представленные в предложенных статьях, соотносятся с современным уровнем методов исследования в этой области (какому уровню соответствуют) (УК-1, УК-2, ПК-2).
- Провести анализ спектральных материалов работы и соответствие структуры соединения спектральным данным, расшифруйте спектры (УК-3, УК-5).
- Предложите структуру аналога для наиболее активного соединения (ПК1-ПК5) предскажите изменения в его спектральных характеристиках?

6. Учебно-методическое и информационное обеспечение дисциплины Рекомендуемая литература

а) основная литература

- 1. Сильверстейн Р., Вебстер Ф., Кимл Д., Спектрометрическая идентификация органических соединений, М.,Бином. Лаборатория знаний 2011.
- 2. Воловенко Ю.М., Карцев В.Г., Комаров И.В., Туров А.В., Хиля В.П. Спектроскопия ядерного магнитного резонанса для химиков, М: МБФНП, 2011.

б) дополнительная литература

- 1. А. Т. Лебедев. Масс-спектрометрия в органической химии. М.: БИНОМ. Лабораторий знаний, 2003.
- 2. Пентин Ю.А., Вилков Л.В. Физические методы исследования в химии: Учебник. М.: Мир, 2003.
- 3. А. Барнс, В. Дж. Орвил-Томас, Колебательная спектроскопия. Современные воззрения и тенденции, М., 1981
- 4. К Р. Эрнст, Дж. Боденхаузен, А. Бокаун, ЯМР в одном и двух измерениях, М., Мир 1990.
- 5. Д. Браун, А. Флойд, М.Сейнзбери, Спектроскопия органических веществ, М., Мир 1992.
- 6. Смит А., Прикладная инфракрасная спектроскопия, пер. с англ., М., 1982;
- 7. . Зигбан, К. Нордлинг, А. Фальманидр. Электронная спектроскопия, М., Мир, 1971
- 8. Л. Титце, Т. Айхер. Препаративная органическая химия. М., Мир, 1999.
- 9. Иоффе Б.В., Костиков Р.Р., Разин В.В. Физические методы определения строения органических молекул. М.: Высшая школа, 1984.
- 10. Дероум Э. Современные методы ЯМР для химических исследований. М.: Мир, 1992.
- 11. Гюнтер Х. Введение в курс спектроскопии ЯМР. М.: Мир, 1984.
- 12. Breitmaier E. Structure Elucidation by NMR in Organic Chemistry. John Wiley & Sons, LTD, 2002.
- 13. Сильверстейн Р., Басслер Г., Моррил Т. Спектроскопическая идентификация органических соединений. М.: Мир, 1977.
- 14. Казицына Л.А., Куплетская Н.Б. Применение УФ-, ИК- и ЯМР-спектроскопии в органической химии. М.: Высшая школа, 1971.

15. Вилков Л.В. Физические методы исследования в химии. Резонансные и электрооптические методы: Учебник для вузов - М.: Высшая школа, 1989—287 с.

7. Материально-техническое обеспечение дисциплины

ФГБНУ НИИНА располагает материально-технической базой, обеспечивающей проведение всех видов теоретической И практической подготовки аспирантов, предусмотренных учебным планом обучения по профилю «Биоорганическая химия»: Аудитория для проведения лекций, оснащенная компьютером и проектором для показа слайдов компьютерных презентаций. Компьютеры, объединенные в локальную сеть с выходом в Интернет и подключенные к международным и российским научным базам данных и электронной библиотеке с основными международными научными журналами. Лаборатории оборудованием ДЛЯ выполнения всех оснащены современным основных спектрального анализа. Инструментальная база ФГБНУ НИИНА включает ЯМР спектрометр Varian-400, жидкостной хромато-масс спектрометр Micro TOF-Q II, ИК-Фурье спектрометр Nikolet 380 с оптическим блоком iS10, спектрометр UNICO UV/Vis 2804, высокоэффективные жидкостные хромотографы LC-20 (Shimadzu), автоматическую флеш-хроматографическую систему Isolera Prime (Biotage).

В процессе обучения применяются следующие образовательные технологии:

- 1. Сопровождение лекций показом визуального материала.
- 2. Сопровождение занятий демонстрациями слайдов, моделей строения органических соединений ИК-, УФ-, ЯМР- и масс-спектров.
- 3. Активные методы обучения работе на ИК-, УФ-, ЯМР- и масс-спектрометрах.

Программное обеспечение и Интернет-ресурсы

$N_{\underline{0}}$	Ссылка на информационный ресурс	Наименование	Доступность
Π/Π		разработки в	
		электронной форме	
1	https://bibliotech.sspa.edu.ru/	Электронно-биб-	По регистрации
		лиотечная система	
		«БиблиоТех»	

2	http://www.biblioclub/	Университетская библиотека onlin	По регистрации
		оиолиотека оппп	
3	http://portal.gersen.ru/	Российский госу-	По регистрации
		дарственный педа-	
		гогический уни-верситет	
		им. А.И. Герцена. Элек-	
		тронная библиотека	
4	http://window.edu.ru/window	Единое окно досту-па к	По регистрации
		образова-тельным	
		ресурсам Федерального	
		пор-тала Российское	
		образование	