ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ НАУЧНОЕ УЧРЕЖДЕНИЕ «НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ПО ИЗЫСКАНИЮ НОВЫХ АНТИБИОТИКОВ имени Г.Ф. ГАУЗЕ»

(ФГБНУ НИИНА)

Рабочая программа подготовки научно-педагогических кадров высшей квалификации по дисциплине

химиотерапия и антибиотики

(программа по выбору)

Направление подготовки: 03.00.00 - БИОЛОГИЧЕСКИЕ НАУКИ

Направленность (профиль): 03.01.06 - БИОТЕХНОЛОГИЯ

Трудоемкость дисциплины ___5_ зачетных единиц

Москва-2018

Направление подготовки: 03.00.00 - БИОЛОГИЧЕСКИЕ НАУКИ

Научная специальность: 03.01.06 - БИОТЕХНОЛОГИЯ

Цикл дисциплин (по учебному плану): Б.1.В.ДВ.1.

Курс:

Трудоёмкость 5 зачетных единиц

Трудоёмкость 180 часов

Количество аудиторных часов на дисциплину: 54 часа

В том числе:

Лекции: 36 часов

Практические и семинарские занятия: 18 часов

Количество часов на самостоятельную работу: 126 часов

Рабочая программа дисциплины **Б.1.В.ДВ.1.** «ХИМИОТЕРАПИЯ И АНТИБИОТИКИ» составлена на основании Федерального государственного образовательного стандарта высшего образования по направлению подготовки кадров высшей квалификации 03.00.00 - БИОЛОГИЧЕСКИЕ НАУКИ и 30.06.01 - ФУНДАМЕНТАЛЬНАЯ МЕДИЦИНА, утвержденного приказом Министерства образования и науки Российской Федерации от 3.09.2014 №1198 по специальности 14.03.07 – Химиотерапия и антибиотики

Рабочая программа дисциплины разработана ФГБНУ «НИИНА»

Разработчик:

Руководитель лаборатории, д.б.н._ (занимаемая должность)

А.С. Тренин (подпись)

Принята на заседании Ученого совета ФГБНУ «НИИНА»

« 17» centogho

сеитотрь 2018 г., протокол № <u>7</u>

Заведующий аспирантурой

В.И. Пономаренко

1. Цели и задачи освоения дисциплины

Настоящая программа охватывает основополагающие разделы химиотерапии и науки об антибиотиках, основные методы разработки и рационального использования химиотерапевтических средств.

Цели дисциплины:

Целью данного курса является знакомство аспирантов с современными достижениями в области химиотерапии инфекционных и опухолевых заболеваний, основными группами лечебных препаратов, приемами и методами работы с химиотерапевтическими средствами, правилами их рационального применения в медицинских целях и оценкой их эффективности.

Особое внимание уделяется биологически активным соединениям из группы антибиотиков, их биосинтезу, химической природе, механизму действия на биохимическом и клеточном уровне, причинам возникновения и распространения лекарственной устойчивости, выделению и химической идентификации антибиотиков, способам получения, микробной и химической трансформации, различным аспектам применения антибиотиков в биологии, медицине, сельском хозяйстве, в научных исследованиях.

Задачи дисциплины:

- сформировать у обучающихся базовые знания в области химиотерапии и антибиотиков, необходимые для выполнения научно-исследовательской работы;
- сформировать у обучающихся представление о правильном, рациональном и наиболее эффективном применении химиотерапевтических средств;
- ознакомить обучающихся с важнейшими достижениями в области разработки химиотерапевтических препаратов, сформировать у них способность к формированию новых подходов в разработке новых лекарственных средств;
- сформировать у обучающихся способность и готовность к использованию лабораторной и инструментальной базы для получения научных данных в области разработки и использования антибиотиков.

2. Место дисциплины в структуре ООП

Настоящая дисциплина «Химиотерапия и антибиотики» - модуль основной профессиональной образовательной программы высшего образования — программы подготовки научно-педагогических кадров в аспирантуре по направлению подготовки 03.00.00 - Биологические науки по специальности 03.01.06 — Биотехнология Обучающийся по данной дисциплине должен иметь фундаментальные представления в области химиотерапии и антибиотиков. Для изучения данной дисциплины необходимо высшее образование с освоением курсов микробиологии, физиологии человека и животных, фармации, биохимии и органической химии для биологических и медицинских специальностей.

3. Требования к результатам освоения дисциплины

Выпускник аспирантуры по специальности 03.01.06 – **Биотехнология** должен обладать следующими универсальными (УК), общепрофессиональными (ОПК) и профессиональными компетенциями (ПК):

Универсальные компетенции:

- способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях (УК-1);
- способность проектировать и осуществлять комплексные исследования, в том числе междисциплинарные, на основе целостного системного научного мировоззрения с использованием знаний в области истории и философии науки (УК-2);
- готовность участвовать в работе российских и международных исследовательских коллективов по решению научных и научно-образовательных задач (УК-3);
- способность планировать и решать задачи собственного профессионального и личностного развития (УК-5).

Общепрофессиональные компетенции:

- способность и готовность к организации проведения фундаментальных научных исследований в области биологии и медицины (ОПК-1);
- способность и готовность к проведению фундаментальных научных исследований в области биологии и медицины (ОПК-2);
- способность и готовность к анализу, обобщению и публичному представлению результатов выполненных научных исследований (ОПК-3);
- способность и готовность к внедрению разработанных методов и методик направленных на охрану здоровья граждан (ОПК-4);
- способность и готовность к использованию лабораторной и инструментальной базы для получения научных данных (ОПК-5);

Профессиональные компетенции:

- способность и готовность использовать научную методологию исследования: знание современных теоретических и экспериментальных методов исследования, основ планирования эксперимента, методов математической обработки данных, способность к практическому использованию и внедрению результатов исследований с целью разработки и рационального применения новых антибиотиков (ПК-1);
- способность и готовность формулировать цели и задачи научных исследований в соответствии с современными тенденциями и перспективами развития химиотерапии, антибиотиков и смежных наук, обоснованно выбирать теоретические и экспериментальные методы и средства решения сформулированных задач (ПК-2);
- способность и готовность использовать навыки самостоятельного сбора данных, изучения, комплексного анализа и аналитического обобщения научной информации и результатов научно-исследовательских работ в области химиотерапии и антибиотиков (ПК-3);
- способность и готовность формулировать научно-обоснованные выводы по результатам исследований, выступать с докладами и сообщениями по тематике проводимых исследований, готовить научные публикации, методические рекомендации и заявки на изобретения; составлять заявки на гранты; поддерживать высокий уровень публикационной активности (ПК-4).

Компетенции по видам деятельности:

- способность к планированию и проведению фундаментальных научных исследований в области химиотерапии и антибиотиков;
- способность к самостоятельному проведению научных исследований в области химиотерапии и антибиотиков, готовность организовать работу исследовательского коллектива;
- способность предлагать пути решения, выбирать методы и средства проведения научных исследований в области химиотерапии и антибиотиков;
- способность и готовность к внедрению новых методов разработки и рационального применения биологически активных препаратов;
- способность и готовность к использованию лабораторной и инструментальной базы для получения научных данных;
- способность и готовность к анализу, обобщению и публичному представлению результатов выполненных научных исследований в области химиотерапии и антибиотиков

В результате изучения дисциплины аспирант должен:

знать:

- фундаментальные основы химиотерапии и науки об антибиотиках;
- основные современные направления в области химиотерапии, ее роль в развитии общества, цели и задачи рациональной химиотерапии;
- основные группы химиотерапевтических препаратов и антибиотиков;
- основные методы химиотерапевтических исследований, современные теоретические и экспериментальные методы испытания лекарственных средств;
- основные подходы к разработке новых антибиотиков;

уметь:

- планировать научно-исследовательскую работу в области химиотерапии и антибиотиков;
- правильно оформлять результаты исследований, делать обобщающие выводы по полученным результатам;

• владеть:

- навыком обоснованного выбора теоретических и экспериментальных методов и средств решения сформулированных задач по направленности химиотерапия и антибиотики;
- методами перспективного планирования, подготовки и проведения НИР, математической обработки результатов экспериментальных исследований в области химиотерапии и антибиотиков;

• синтезировать:

 формулировать цели и задачи научных исследований в соответствии с современными тенденциями и перспективами развития химиотерапии, антибиотиков и смежных наук; проводить обобщение полученных результатов, представлять научные результаты по теме диссертационной работы в виде публикаций в рецензируемых научных изданиях

• анализировать:

- выполнять комплексный анализ и аналитическое обобщение научной информации и результатов научно-исследовательских работ в области химиотерапии и антибиотиков, а также медицины и биологии в целом;
- проводить аналитическое обобщение и критический анализ экспериментальных данных по получению и испытанию химиотерапевтических препаратов;
- формулировать выводы и рекомендации в области химиотерапии и антибиотиков

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 5 зачетных единиц (180 часов). Дисциплина изучается на 2-м году аспирантуры. Дисциплина состоит из 12 разделов, объединенных в 2 модуля.

4.1. Структура дисциплины

	Объем		
Вид учебной работы	В зачетных единицах	В академических часах	
Общая трудоемкость дисциплины по учебному плану	5	180	
Аудиторные занятия:	1,5	54	
Лекции (Лек)	1	36	
Практические занятия (ПЗ)	0,5	18	
Лабораторные занятия	-	-	
Самостоятельная работа (СР):	3,5	126	
Другие виды самостоятельной работы	2,5	90	
Реферат	1	36	
Вид итогового контроля: Зачет	-	-	

		Объем		
Вид учебной работы	В зачетных единицах	В астрономических часах		
Общая трудоемкость дисциплины по учебному плану	5	135		
Аудиторные занятия:	2	40,5		
Лекции (Лек)	1	27		
Практические занятия (ПЗ)	0,5	13,5		
Лабораторные занятия	-	-		

Самостоятельная работа (СР):	3,5	94,5
Другие виды самостоятельной работы	2,5	67,5
Реферат	1	27
Вид итогового контроля: Зачет	-	-

4.1.1. Разделы дисциплины и виды занятий

7.0		Объем учебной работы (в часах)						Вид	
№ п/п	Наименование Раздела	Daara	Всего Из аудиторных			КСР	Сам.	итогового	
11/11		Всего	аудит	Лекц.	Лаб	Прак	KCP	работа	контроля
	Модуль 1.								
1	Введение	6	2	2	0	0	0	4	
2	Принципы химиотерапии Фармакологическое и токсикологическое изучение химиотерапевтических препаратов.	16	4	2	0	2	0	12	
3	Антимикробная, противоопухолевая и антивирусная химиотерапия.	16	4	4	0	0	0	12	
4.	Химиотерапия и иммунитет.	16	4	4	0	0	0	12	
5.	Статины и другие ингибиторы биосинтеза стеролов. Профилактика и терапия сердечнососудистых заболеваний	18	6	4	0	2	0	12	
	Модуль 2.								
6	Антибиотики: основные понятия, история открытия, основные группы антибиотиков, классификация антибиотиков	18	6	4	0	2	0	12	
7	Основы механизма действия антибиотиков. Методы определения чувствительности к антибиотикам.	16	4	2	0	2	0	12	
8	Антибиотики, влияющие на функционирование мембран Антибиотики - ингибиторы биосинтеза клеточной стенки	16	6	4	0	2	0	10	

9	Антибиотики - ингибиторы синтеза белка. Антибиотики, подавляющие синтез нуклеиновых кислот. Противоопухолевые антибиотики	14	4	2	0	2	0	10	
10	Биосинтез антибиотиков.	14	4	2	0	2	0	10	
11	Проблема устойчивости к антибиотикам.	16	6	4	0	2	0	10	
12	Разработка новых антибиотиков. Основы промышленного получения антибиотиков. Немедицинское применение антибиотиков.	14	4	2	0	2	0	10	
	Итого	180	54	36	0	18	0	126	Зачет

4.2. Содержание дисциплины

No	Наименование	Содержание раздела (темы)	Форма		
π/	раздела		проведения		
П	дисциплины		занятий		
	Модуль 1.				
1	Введение	Определение химиотерапии как научной	Лекции,		
		дисциплины. Связь химиотерапии, с другими	самостоятел		
		медицинскими и биологическими науками.	ьная работа		
		История химиотерапии. Эмпирический период.			
		Успехи медицинской микробиологии и органической			
		химии, создавшие предпосылки для быстрого развития			
		химиотерапии. Начало современного этапа развития			
		химиотерапии.			
		Современный период развития химиотерапии.			
		Наступление эры антибиотиков.			
2	Принципы	Основные принципы химиотерапии. Принципы	Лекции,		
	химиотерапии	рациональной химиотерапии и антибиотикотерапии.	семинары,		
	Фармакологиче	Экспериментальная химиотерапия. Основные	самостоятел		
	ское и	требования, предъявляемые медициной к	ьная работа.		
	токсикологичес	химиотерапевтическому препарату.			
	кое изучение	Фармакологическое и токсикологическое			
	химиотерапевт	изучение химиотерапевтических препаратов.			
	ических	Химиотерапевтические модели.			
	препаратов.	Всасывание, распределение, метаболизм и			
		выведение химиопрепаратов. Методы анализа			
		препаратов в биологических жидкостях.			
		Биодоступность, определение понятия и методы			

		оценки.	
		Методы изучения фармакокинетики и	
		фармакодинамики химиотерапевтических препаратов.	
		Фармакокинетическое взаимодействие	
		антибиотиков с другими лекарственными веществами,	
		в том числе с иммуномодуляторами, гормонами,	
		ферментами, витаминами и др.	
		Побочные реакции при использовании	
		антибиотиков, их классификация и меры по	
		предупреждению или ослаблению.	
		Нежелательные реакции при взаимодействии	
		антибиотиков с другими лекарственными веществами,	
		классификация этих эффектов, меры борьбы или	
		предупреждения побочных эффектов.	
		Особенности химитерапии у детей, при	
		беременности и у лиц пожилого возраста. Особенности	
		применения антибиотиков при нарушении функции	
		почек и печени. Дисбактериоз, колонизационная	
		резистентность.	
3	Антимикробная,	Антимикробная и противоопухолевая	Лекции,
	противоопухолев	± •	семинары,
	ая и	химиотерапии бактериальных, протозойных. вирусных	самостоятел
	антивирусная	инфекций, микозов, гельминтозов, злокачественных	ьная работа.
	химиотерапия.	опухолей.	
		Общая характеристика антимикробных	
		препаратов, спектр и механизм антимикробного	
		действия, особенности действия in vitro и in vivo.	
		Понятие о чувствительности и устойчивости	
		микроорганизмов к антибиотикам. Методы	
		определения активности и концентрации препаратов.	
		Противоопухолевая химиотерапия Современные	
		противоопухолевые препараты. Принципы	
		комбинированной противоопухолевой химиотерапии.	
		Терапия вирусных инфекций, современные	
		противовирусные препараты. Амантадины, арбидол,	
		бонафтон, производные нуклеозидов, интерфероны.	
		Антиретровирусные препараты: ингибиторы обратной	
		транскрипции, ингибиторы протеазы ВИЧ.	
4.	Химиотерапия и	Химиотерапия и иммунитет. Средства,	Лекции,
	иммунитет,	влияющие на процессы иммунитета.	семинары,
		Противоопухолевые препараты на основе	самостоятел
		моноклональных антител. Антибиотики с	ьная работа.
	~	иммуномодулирующими свойствами. Циклоспорин А.	
5.	Статины и	Терапия сердечно-сосудистых заболеваний.	Лекции,
	другие	Гиполипидемические препараты. Ингибиторы	семинары,
	ингибиторы	биосинтеза стеролов. Ингибиторы биосинтеза	самостоятел
	биосинтеза	холестерина	ьная работа.
	стеролов.		
	Профилактика и		
	терапия		
	сердечно-		

	сосудистых заболеваний		
	заоолевании		
	Модуль 2.		
6	Антибиотики:	Явление антагонизма у микробов. Антибиотики,	Лекции,
	основные	определение понятия.	семинары,
	понятия,	История открытия антибиотиков. Пенициллин,	самостоятел
	история	грамицидины, стрептомицин. Современные	ьная работа.
	открытия,	представления о биологической роли антибиотиков.	
	основные	Основные группы антибиотиков, их химическая	
	группы	структура и особенности спектра антибиотического	
	антибиотиков	действия.	
7	Основы	Механизмы действия антибиотиков.	Лекции,
	механизма	Классификация антибиотиков по механизму действия.	семинары,
	действия	Связь между механизмом действия и	самостоятел
	антибиотиков.	избирательностью антибиотиков.	ьная работа.
	Методы	Определение чувствительности к антибиотикам	
	определения	у возбудителей инфекций (методы, интерпретация	
	чувствительнос	результатов). Минимальная подавляющая	
	ти к	концентрация (МПК) и минимальная бактерицидная	
	антибиотикам	концентрация (МБК). Определение МПК и МБК	
		антибиотиков в жидкой и плотной питательной среде.	
		Факторы, влияющие на определение активности	
		антибиотиков. Миниатюризация и автоматизация	
		методов.	
		Антибиотикограмма. Спектр действия	
		антибиотиков. Широкий и узкий спектр антимикробного действия. Взаимодействие	
		антимикрооного деиствия. Взаимодеиствие антибиотиков при их сочетанном применении	
		(синергизм, антагонизм, аддитивный эффект).	
8	Антибиотики,	Строение клеточной мембраны.	
O	влияющие на	Полиеновые антибиотики (амфотерицин В,	
	функционирова	нистатин, леворин, и др.) и их взаимодействие со	
	ние мембран	стеролами мембраны. Химические и генно-	
	Антибиотики -	инженерные производные полиеновых антибиотиков.	
	ингибиторы	Противогрибковые препараты. Антибиотики-	
	биосинтеза	полиены. Гризеофульвин. Производные имидазола и	
	клеточной	триазола (кетоконазол, итраконазол, флуконазол и др.),	
	стенки	производные N-метилнафталина. Химиотерапия	
		поверхностных и глубоких микозов.	
		Антибиотики - ингибиторы транспорта электронов:	
		антимицин А, олигомицин. Антибиотики-ионофоры:	
		монензин, валиномицин, другие циклодепсипептиды,	
		макротетролиды.	
		Полипептидные антибиотики: грамицидин S,	
		тиротрицин. полимиксины. бацитрацин. Гелиомицин.	
		Понятие о структуре и биосинтезе компонентов	
		клеточной стенки. Клеточные стенки	
		грамположительных и грамотрицательных	
		микроорганизмов.	

			-
		Бета-лактамные антибиотики как ингибиторы синтеза пептидогликана. Природные и полусинтетические пенициллины. Пенициллины, устойчивые к бета-лактамазам стафилококков, Цефалоспорины. Карбапенемы и монобактамы. Ингибиторы бета-лактамаз. Гликопептидные антибиотики (дальбагептиды). Ристомицин, ванкомицин, тейкопланин. Преимущества и недостатки антибиотиков этой группы.	
9	Антибиотики - ингибиторы синтеза белка. Антибиотики, подавляющие синтез нуклеиновых кислот. Противоопухол евые антибиотики	Общее понятие о механизмах биосинтеза белка. Ингибиторы функций 30S и 50S субчастиц рибосом. Аминогликозидные антибиотики. Природные и полусинтетические тетрациклины. Пуромицин, хлорамфеникол, линкомицин. Ингибиторы внерибосомных факторов: фузидин, кирромицины. Антибактериальные макролиды. Механизмы подавления репликации и транскрипции. Противоопухолевые антибиотики, избирательно подавляющие синтез нуклеиновых кислот путем образования комплексов: антибиотики группы оливомицина-митрамицина, актиномицины,	Лекции, семинары, самостоятел ьная работа.
		антрациклиновые антибиотики. Антибиотики - модификаторы ДНК: митомицины, брунеомицин, блеомицины, неокарциностатин. Индукторы однонитевых разрывов ДНК. Основы избирательного действия этих антибиотиков на опухолевые клетки. Антибиотики (актиномицины, антрациклины, блеомицины, брунеомицин, митомицин, оливомицин и др.), использование в противоопухолевой терапии. Принципы комбинированной химиотерапии.	
10	Биосинтез антибиотиков.	Первичные и вторичные метаболиты. Основные продуценты антибиотиков. Токсичность антибиотиков для собственного продуцента. Парадокс - как избежать самоубийства. Методы исследования путей биосинтеза антибиотиков. Регуляция биосинтеза антибиотиков. Афактор и индукторы биосинтеза антибиотиков и дифференцировки продуцентов. Организация кластеров генов биосинтеза. Биосинтез бета-лактамных антибиотиков. Биосинтез поликетидных антибиотиков. Полипептидные и депсипептидные антибиотики; рибосомный и нерибосомный синтез пептидов, механизм биосинтеза грамицидина S.	Лекции, семинары, самостоятел ьная работа.

		Marray and an array and a second of	
		Мультиферментные комплексы при биосинтезе	
		антибиотиков. Биосинтез изопреноидных	
		антибиотиков и олигосахаридных антибиотиков.	
		Направленный биосинтез антибиотиков. Мутасинтез и	
		биологическая трансформация антибиотиков.	
		Селекционно-генетические и физиолого-	
		биохимические исследования по оптимизации	
		биосинтеза антибиотиков.	
11	Проблема	Биохимические и генетические механизмы	Лекции,
	устойчивости к	устойчивости к антибиотикам. Хромосомная и	семинары,
	антибиотикам.	внехромосомная локализация детерминантов	самостоятел
		устойчивости. Структура R-плазмид. Интегроны.	ьная работа.
		Эпидемиологические и экологические аспекты	1
		лекарственной устойчивости.	
		Развитие устойчивости как результат	
		модификации мишени антибиотика и нарушения	
		проникновения антибиотика в микробную клетку.	
		Ферментативная инактивация антибиотиков.	
		Классификация и свойства бета лактамаз. Механизмы	
		инактивации аминогликозидов, хлорамфеникола.	
		Множественная лекарственная устойчивость.	
		Лекарственная устойчивость Streptococcus pneumoniae.	
		Метициллинрезистентные стафилококки (MRSA).	
		Опасность распространения энтерококков, устойчивых	
		к ванкомицину, и появления стафилококков с	
		промежуточной устойчивостью к ванкомицину (VISA).	
		Мониторинг лекарственной устойчивости	
		возбудителей инфекционных заболеваний.	
		Антибиотики, эффективные против MRSA.	
		Меры борьбы с антибиотикорезистентностью	
		(сочетанное применение антибиотиков, применение	
		антибиотиков с ингибиторами ферментов инактивации	
		антибиотиков, барьерная политика	
		антибиотикотерапии, эпидемиологические	
		мероприятия, использование новых антибиотиков или	
		модифицированных с улучшенными свойствами и	
		проч.).	
12	Разработка	Изыскание антимикробных, противовирусных и	Лекции,
12	т азраоотка новых	противоопухолевых антибиотиков. Методы выделения	семинары,
	антибиотиков.	микробов-антагонистов и испытание	самостоятел
	Основы	антагонистических свойств микроорганизмов.	ьная работа.
	промышленног	Проблема выделения редких и новых форм	Bilan paoota.
	о получения	микроорганизмов. Селективные среды. Использование	
	антибиотиков.	микробного биоразнообразия для скрининга	
	Немедицинское	продуцентов. Использование методов генной и	
	применение	клеточной инженерии для создания новых	
	антибиотиков.	антибиотиков.	
		Первичная оценка антибиотических свойств	
		новых антибиотиков. Методы ранней идентификации	
		антибиотиков. Микробиологические модели и модели с	
		использованием опухолевых клеток для отбора	
	I	,	

противоопухолевых антибиотиков.

Методы направленного поиска антибиотиков определенных химических групп. Использование современных молекулярно-биологических данных о новых мишенях химиотерапевтических препаратов и данных геномики для направленного поиска. Химическая трансформация антибиотиков.

Штаммы-продуценты антибиотиков, необходимость их улучшения. Понятие о селекции штаммов. Использование мутагенов и отбор активных вариантов. Использование методов генной и клеточной инженерии в селекции продуцентов, поддержание активности продуцентов. Методы хранения культур продуцентов.

Основные условия культивирования микроорганизмов. Оптимизация этих условий. Подготовка посевного материала, регулируемая ферментация.

Выделение и очистка антибиотиков. Методы экстракции, сорбции и ионного обмена при выделении антибиотиков.

Методы оценки качества препаратов антибиотиков. Единицы активности. Стандартные образцы. Химические и физико-химические методы оценки качества.

Использование антибиотиков в ветеринарии, Использование животноводстве, растениеводстве. антибиотиков добавок. качестве кормовых В Противогельминтные, инсектицидные, акарицидные Антибиотики-гербициды. Биалофос. антибиотики. Политика ограничения применения антибиотиков медицинского назначения для нужд ветеринарии, сельского хозяйства.

Антибиотики как инструменты научного исследования.

5. Образовательные технологии

Освоение программы предусматривает аудиторные занятия (лекции, семинары и практические работы), включающие интерактивные формы освоения учебного материала и самостоятельную работу, связанную с применением микробиологических методов для решения проблем диссертационного исследования.

Для повышения усвоения материала лекции сопровождаются визуальным материалов в виде слайдов, подготовленных с использованием современных компьютерных технологий (программный пакет презентаций Microsoft Office Powerpoint), проецируемых на экран с помощью видеопроектора. Практические работы проводятся в микробиологических и биохимических лабораториях с использованием современных

приборов (ламинарные шкафы, автоматические микродозаторы) с участием обучаемых в научной работе и выполнении исследовательских проектов.

Виды самостоятельной работы: в домашних условиях, в библиотеке, на компьютерах с доступом к базам данных и ресурсам Интернет, в лабораториях с доступом к лабораторному оборудованию и приборам. Самостоятельная работа подкрепляется учебно-методическим и информационным обеспечением, включающим учебники, учебнометодические пособия, конспекты лекций, учебное и научное программное обеспечение. В ходе самостоятельной работы проводится анализ литературных данных, составление подборки статей из научных журналов по разработке, получению и изучению биологической активности и химиотерапевтических свойств антибиотиков и других биологически активных соединений.

6. Фонд оценочных средств для оценки освоения дисциплины «Химиотерапия и антибиотики»

Типовые задания для самостоятельной работы

Подготовка обзора литературы по механизму действия антибиотиков, способам получения антибиотиков, анализу их антимикробной и фармакологической активности.

Аттестания:

- а) Текущая аттестация контрольное собеседование по каждому разделу дисциплины на семинарских занятиях, выполнение 3 контрольных работ по двум основным модулям, написание реферата
- б) Итоговая аттестация по результатам выполнения зачетной работы

Вопросы к зачету – соответствуют вопросам, включенным в программу подготовки к сдаче вступительного экзамена и экзамена кандидатского минимума для аспирантов, занимающихся по специальности 14.03.07 – Химиотерапия и антибиотики

6.1. Разделы дисциплины, содержание разделов, оценочные средства, примерные темы рефератов

6.1.1. Типовые варианты для контрольных работ

МОДУЛЬ 1. Контрольная работа №1 (15 баллов)

1. Перечислите основные принципы рациональной химиотерапии, основные требования, предъявляемые медициной к химиотерапевтическим препаратам, и основные направления в исследовании фармакологической безопасности лекарственных средств.

- 2. Дайте определение фармакокинетики и фармакодинамики, опишите основные методические рекомендации по изучению общетоксического действия лекарственных средств.
- 3. Дайте классификацию гиполипидемичесвких препаратов, покажите их место в лечении и профилактике сердечно-сосудистых заболеваний, дайте общую характеристику статинам, опишите их механизм действия и сферу применения, опишите механизм действия ингибиторов биосинтеза стеролов, покажите их место в современной терапии.

U	\sim
заданий:	Опенка
і эадани	Оценка

№ задания	1	2	3	Σ			
Оценка, балл	5	5	5	15			

МОДУЛЬ 2. Контрольная работа №2 (15 баллов)

- 1. Дайте определение понятию антибиотики, раскройте современное представление об антибиотиках, их роли в терапии различных заболеваний, а также биологической роли для их продуцентов. Опишите способы определения активности антибиотиков и факторы, влияющие на определение активности. Раскройте понятие спектра биологической активности, а также минимальной подавляющей концентрации (МПК) и минимальной бактерицидной концентрации (МБК).
- 2. Перечислите способы классификации антибиотиков, дайте подробную классификацию антибиотиков по механизму действия. Опишите механизм действия антибиотиков ингибиторов биосинтеза клеточной стенки и антибиотиков, нарушающих функционирование мембран. Приведите конкретные примеры.
- 3. Опишите механизм действия антибиотиков ингибиторов биосинтеза белка и антибиотиков ингибиторов биосинтеза нуклеиновых кислот. Приведите конкретные примеры.

Оценка заданий:

- 40111111 30A11111111						
№ задания	1	2	3	Σ		
Оценка, балл	5	5	5	15		

МОДУЛЬ 2. Контрольная работа №3 (15 баллов)

- 1. Опишите проблему устойчивости к антибиотикам и механизмы резистентности.
- 2. Дайте определение первичному и вторичному метаболизму, опишите основные пути биосинтеза антибиотиков.
- 3. Опишите основные подходы к созданию новых антибиотиков, методы направленного поиска, применение моделей в поиске новых антибиотиков, приведите конкретные примеры в биологической и химической трансформации природных антибиотиков.

Оценка заданий:

№ задания	1	2	3	$oldsymbol{\Sigma}$
Оценка, балл	5	5	5	15

6.1.2. Примерный перечень оценочных средств для оценки компетенций при аттестации аспирантов по дисциплине «Химиотерапия и антибиотики»

Примерные темы для написания реферата:

- 1) Основные подходы к проведению антимикробной и противоопухолевой химиотерапии, основные группы лекарственных соединений, основные достижения
- 2) Химиотерапия и иммунитет
- 3) Статины: их роль в профилактике и терапии сердечно-сосудистых и онкологических заболеваний
- 4) Ингибиторы биосинтеза стеролов: разнообразие в химической структуре и механизме действия, перспективы применения в клинике
- 5) Противоопухолевые антибиотики, механизм действия особенности применения, основы избирательного действия.
- 6) Антибактериальные антибиотики: основные группы, классификация по механизму действия и способам применения, основы избирательного действия.
- 7) Антифунгальные антибиотики, основные группы, классификация по механизму действия и способам применения, основы избирательного действия.
- 8) Резистентность к антибиотикам: биохимические и генетические механизмы устойчивости, ее распространение.
- 9) Основные достижения в изучении вторичного метаболизма и путей биосинтеза антибиотиков.
- 10) Основные достижения последних десятилетий в поиске природных антибиотиков.
- 11) Основные подходы к созданию новых антибиотиков: успехи в области создания новых антибиотиков путем химической и биологической модификации природных соелинений

Примерный перечень заданий

В реферате представьте результаты анализа и решение следующих задач:

- На основе прочитанной статьи сделайте заключение об основных результатах, достигнутых в описываемых работах, выделите структуру с наибольшей биологической активностью (УК-1, ПК-1).
- Сопоставьте результаты определения биологической активности антибиотиков и их токсических характеристик в экспериментах in vitro с применением методов математической обработки данных (УК-1, ПК-1).
- Сделайте вывод о том, насколько методы исследования, представленные в предложенных статьях, соотносятся с современным уровнем методов исследования в этой области (какому уровню соответствуют) (УК-1, УК-2, ПК-2).

- На основе публикаций провести анализ распространения резистентности к антибиотикам и механизмов резистентности (УК-3, УК-5, ПК-3).
- Проведите сопоставление структура активность в ряду антибиотиков отдельных химических групп, предложите структуру аналога для наиболее активного соединения (ПК1-ПК4)
- **15-14 баллов** аспирант свободно, с глубоким знанием материала правильно и полно решил задачу (выполнил все задания, правильно ответил на все поставленные вопросы); **13-10 баллов** если аспирант достаточно убедительно, с незначительными ошибками в теоретической подготовке и достаточно освоенными умениями по существу правильно ответил на вопросы или допустил небольшие погрешности в ответе;
- **9-6• баллов** если аспирант недостаточно уверенно, с существенными ошибками в теоретической подготовке и плохо освоенными умениями ответил на вопросы ситуационной задачи; с затруднениями, но все же сможет при необходимости решить подобную задачу на практике;
- **0-5• баллов** если аспирант имеет очень слабое представление о предмете и допустил существенные ошибки в ответе на большинство вопросов ситуационной задачи, неверно отвечал на дополнительно заданные ему вопросы, не может справиться с решением подобной задачи на практике

6.2. Вопросы к зачету

Вопросы к зачету – включены в программу кандидатского экзамена по специальности

Типовые контрольные вопросы к зачету по разделам дисциплины

- 1. Определение химиотерапии как научной дисциплины.
- 2. Бета-лактамные антибиотики. Природные пенициллины. Полусинтетические пенициллины: аминопенициллины, пенициллины, устойчивые к бета-лактамазам стафилококков, пенициллины, активные в отношении Pseudomonas aeruginosa.
- 3. Антибиотики с иммуномодулирующими свойствами. Циклоспорин А.
- 4. История химиотерапии.
- 5. Цефалоспорины первого, второго, третьего и четвертого поколений. Карбапенемы и монобактамы..
- 6. Методы направленной доставки антибиотиков в очаг поражения.
- 7. Начало современного этапа развития химиотерапии.
- 8. Природные и полусинтетические тетрациклины.
- 9. Противотуберкулезные средства. Классификация средств, применяемых для лечения туберкулеза.
- 10. Основные принципы антибиотикотерапии.
- 11. Производные сульфаниламидов.
- 12. Препараты для лечения малярии.
- 13. Побочные реакции при применении антибиотиков, их классификация и меры по предупреждению или ослаблению побочных реакций.
- 14. Природные и полусинтетические аминогликозиды.
- 15. Антибиотики макролиды и азалиды.
- 16. Современный период развития химиотерапии.

- 17. Гликопептидные антибиотики. Преимущества и недостатки антибиотиков этой группы.
- 18. Противоглистные средства.
- 19. Особенности применения антибиотиков у детей, при беременности и у пожилых.
- 20. Антибиотики с узким грамположительным спектром действия.
- 21. Противовирусные средства.
- 22. Особенности применения антибиотиков при нарушении функции почек и печени.
- 23. Фторхинолоны.
- 24. Антибиотики, эффективные против MRSA.
- 25. Взаимодействие антибиотиков при их сочетанном применении (синергизм, антагонизм, аддитивный эффект).
- 26. Противогрибковые препараты. Антибиотики-полиены.
- 27. Противоопухолевые препараты. Таксаны, алкалоиды винка, антиметаболиты, алкилирующие препараты, гормональные средства и антагонисты гормонов.
- 28. Понятие о чувствительности и устойчивости микроорганизмов к антибиотикам.
- 29. Ингибиторзащищенные пенициллины.
- 30. Химиотерапия поверхностных и глубоких микозов.
- 31. Явление антагонизма у микробов. Антибиотики. Определение понятия. История открытия.
- 32. Ингибиторы функций 30S и 50S субчастиц рибосом..
- 33. Противоопухолевые препараты на основе моноклональных антител.
- 34. Современные представления о биологической роли антибиотиков.
- 35. Бета-лактамные антибиотики как ингибиторы синтеза пептидогликана. Пенициллинсвязывающие белки.
- 36. Принципы комбинированной противоопухолевой химиотерапии..
- 37. Средства, влияющие на процессы иммунитета.
- 38. Ингибиторы синтеза фолиевой кислоты и ингибиторы дигидрофолатредуктазы.
- 39. Антиретровирусные препараты (ингибиторы обратной транскриптазы, ингибиторы протеазы ВИЧ. Понятие о высокоактивной антиретровирусной терапии.
- 40. Основные требования, предъявляемые медициной к химиотерапевтическому препарату.
- 41. Антибиотики-анзамицины. Природные и полусинтетические рифамицины.
- 42. Мониторинг лекарственной устойчивости возбудителей инфекционных заболеваний.
- 43. Основные группы антибиотиков, их химическая структура и особенности спектра антибиотического действия.
- 44. Ингибиторы функционирования клеточной мембраны.
- 45. Новые фторхинолоны.

7. Учебно-методическое и информационное обеспечение дисциплины

а) основная литература

- 1. Противоопухолевая химиотерапия. Руководство. Под ред. Р.Т.Скила. М.: ГЭОТАР-Медиа, 2011. 1032 с.
- 2. Руководство по проведению доклинических исследований лекарственных средств. Под ред. А.Н. Миронова. Часть первая. М.: Гриф и К, 2012. 944 с.
- 3. Райд Дж.Л., Рубин П.К., Уолтерс М.Р. Клиническая фармакология и фармакотерапия. М.: Медицинская литература, 2009. 416 с.
- 4. Нельсон Д. «Основы биохимии Ленинджера" в 3-х т. М., «Бином», 2011
- 5. Альбертс Б., Джонсон А., Льюис Дж., Рэфф М., Робертс К., Уолтер П. Молекулярная биология клетки. В 3 томах. М.: Изд-во: Регулярная и хаотическая динамика, Институт компьютерных исследований, 2013
- 6. Егоров Н.С. Основы учения об антибиотиках. М.: Изд-во МГУ, Наука, 2004
- 7. Ланчини Д., Паренти Ф. Антибиотики. M., MИР, 1985. 272 c.
- 8. Гаузе Г.Ф., Дудник Ю.В. Противоопухолевые антибиотики. М. Медицина, 1987.
- 9. Гэйл 3., Кандлифф Э., Рейнолдс П., Ричмонд М., Уоринг М. Молекулярные основы действия антибиотиков. М., МИР, 1975.
- 10. Руководство по химиотерапии опухолевых заболеваний. Под ред. Н.И. Переводчиковой. М.: Практическая медицина, 2011.
- 11. Тренин А.С. Микробные метаболиты ингибиторы биосинтеза стеролов, их химическое разнообразие и особенности механизма действия. // Биоорганическая химия. 2013. Т.39. №6. С.633-657
- 12. Журналы «Антибиотики и химиотерапия», «Клиническая микробиология и антимикробная химиотерапия», «Антибиотики и медицинская биотехнология», «Микробиология», «Микробиология», «Прикладная биохимия и микробиология», «Химико-фармацевтический журнал», «Экспериментальная и клиническая фармакология», Journal of Antibiotics (Tokio), Antimicrobial Agents and Chemotherapy, Journal of Antimicrobial Chemotherapy
- 13. www.apua.ortj; www.asmusa.org; www.rlsnet.ru; https://www.litres.ru/attilio-fabbretti-2/antibiotics-targets-mechanisms-and-resistance-34378880/ www.asmusa.org; www.asmusa.org; www.asmusa.org; https://www.elsevier.com/books/antibiotics/korzybski/978-1-4831-9801-9

б) дополнительная литература

- 1. Christopher Walsh, Timothy A. Wencewicz. Antibiotics: Challenges, Mechanisms, Opportunities. ASM Press, 2016. 477 pp.
- 2. Antibiotics: Actions, origins, resistance, by C. Walsh. 2003. Washington, DC: ASM Press. 345 pp.
- 3. Антибиотики и противоинфекционный иммунитет. Под ред. Н.Д. Ющука, И.П.Балмасовой, В.Н.Царева. М.: Практическая Медицина, 2012. 232 с.
- 4. Рассел Д., Кон Р. Антибиотики. М.: Изд-во «Книга по Требованию», 2012. 66 с.
- 5. Сизенцов А.Н., Мисетов И.А., каримов И.Ф. Антибиотики и химиотерапевтические препараты: учебник. Оренбургский университет Оренбург: ОГУ, 2012. 489 с.
- 6. Харкевич Д.А. Фармакология: Учебник. М.:. Изд. дом «ГЭОТАР-МЕД». 2006.- 734 с.
- 7. Косарев В., Бабанов С., Вербовой А. Справочник клинического фармаколога. М.: Феникс, 2011. 480 с.

- 8. Корман Д.Б. Основы противоопухолевой химиотерапии. М.: Практическая Медицина, 2006
- 9. Страчунский Л.С., Козлов С.Н. Современная антимикробная химиотерапия. Руководство для врачей. – М.: Боргес, 2002. – 432 с.
- 10. Рациональная антимикробная химиотерапия. Настольная книга практикующего врача. Под ред. В.П.Яковлева, С.В.Яковлева. М.: Литтерра, 2002.
- 11. Attilio Fabbretti, Claudio Gualerzi O., Cynthia Pon L., Letizia Brandi. Antibiotics. Targets, Mechanisms and Resistance. 2013 https://onlinelibrary.wiley.com/doi/book/10.1002/9783527659685
- 12. Крыжановский С.А. Клиническая фармакология. М., Academia, 2003
- 13. Основы клинической фармакологии и рациональной фармакотерапии. Настольная книга практикующего врача. Под ред. Ю.Б.Белоусова, М.В.Леоновой. М.: Литтерра, 2002.
- 14. Навашин С., Фомина И. Рациональная антибиотикотерапия, 1982, 496с.
- 15. Тренин А.С. Методология поиска новых антибиотиков: состояние и перспективы. // Антибиотики и химиотерапия 2015. Т.60. № 7-8. С. 34-46.
- 16. Чучалин А.Г., Белоусов Ю.Б., Хабриев Р.У. Руководство по рациональному использованию лекарственных средств Практическое пособие. 2007
- 17. Машковский М.Д. Лекарственные средства. М., 2005.-870с.
- 18. Регистр лекарственных средств России. 2015
- 19. Salma Jum'a Rafik Karaman ANTIBIOTICS In book: Commonly Used Drugs Uses, Side Effects, Bioavailability & Approaches to Improve itEdition: 1Chapter: 2Publisher: Nova Science PublishersEditors: Rafik Karaman 2015 DOI: 10.13140/RG.2.1.5114.4804 https://www.researchgate.net/publication/272820065_ANTIBIOTICS

8. Материально-техническое обеспечение дисциплины

ФГБНУ НИИНА располагает материально-технической базой, обеспечивающей проведение всех видов теоретической и практической подготовки аспирантов, предусмотренных учебным планом обучения по профилю «Фундаментальная медицина»:

Аудитория для проведения лекций, оснащенная компьютером и проектором для показа слайдов компьютерных презентаций. Компьютеры, объединенные в локальную сеть с выходом в Интернет, подключенные к международным и российским научным базам данных и электронной библиотеке с основными международными научными журналами.

Лаборатории оснащены современным оборудованием для выполнения всех основных работ по изучению биологических свойств антибиотиков. Выявление антимикробной активности проводится В специально оборудованных микробиологических комнатах-боксах с приточной вентиляцией с использованием микроорганизмов, относящихся к 3-й и 4-й, группам патогенности. Лаборатории оснащены ламинарными шкафами Labsystems, высокоточными аналитическими весами,

Эксперименты с животными проводятся в виварии института. Инструментальная база ФГБНУ НИИНА включает современные высокоскоростные центрифуги, ЯМР спектрометр Varian-400, жидкостной хромато-масс спектрометр Micro TOF-Q II, ИК-Фурье спектрометр Nikolet 380 с оптическим блоком iS10, спектрометр UNICO UV/Vis 2804, высокоэффективные жидкостные хромотографы LC-20 (Shimadzu), автоматическую флеш-хроматографическую систему Isolera Prime (Biotage).

В процессе обучения применяются следующие образовательные технологии:

- 1. Сопровождение занятий демонстрациями слайдов и другого визуального материала,
- 2. Активные методы обучения работе на ИК-, УФ-, ЯМР- и масс-спектрометрах.

Библиотечный фонд института располагает отечественными и зарубежными журналами, публикующими статьи в области химиотерапии и антибиотиков, в частности:

- «Антибиотики и химиотерапия»,
- «Клиническая микробиология и антимикробная химиотерапия»,
- «Антибиотики и медицинская биотехнология»,
- «Микробиология»,
- «Микология и фитотерапия»,
- «Микробиология»,
- «Прикладная биохимия и микробиология»,
- «Химико-фармацевтический журнал»,
- «Экспериментальная и клиническая фармакология»,
- Journal of Antibiotics (Tokio),
- Antimicrobial Agents and Chemotherapy,
- Journal of Antimicrobial Chemotherapy

9. Программное обеспечение и Интернет-ресурсы

$N_{\underline{0}}$	Наименование и краткая характеристика электронных	Количество
п/п	образовательных и информационных ресурсов (электронных	экземпляров,
	изданий и информационных баз данных)	точек доступа
1	Электронная библиотека Первого МГМУ3	Не ограничен
2	QPAT - патентная база компании Questel	Не ограничен
	http://www.qpat.com/index.htm	
3	Университетская информационная система Россия (УИС	Не ограничен
	РОССИЯ) <u>Http://uisrussia.msu.ru/is4/main.jsp</u>	
4	AAAS: Журнал «Science»	Не ограничен
	http://www.sciencemag.org/magazine	
5	Scopus (https://www.scopus.com/) - реферативная база данных,	Не ограничен
	которая индексирует более 21,000 наименований научно-	
	технических и медицинских журналов примерно 5,000	
	международных издательств	
6	Научная электронная библиотека: Российские академические	Не ограничен

	журналы (elibrary.RU)	
	http://elibrary.ru/defaultx.asp	
7	Электронная библиотека диссертаций (ЭБД) РГБ http://diss.rsl.ru/	Не ограничен
8	ScienceDirect (https://www.sciencedirect.com) – ведущая	Не ограничен
	информационная, полнотекстовая платформа Elsevier для ученых,	
	преподавателей, студентов, специалистов медицинской области	
9	Medline Complete	Не ограничен
	http://search.ebscohost.com/	
10	База данных Nano https://goo.gl/PdhJdo Этот уникальный ресурс	
	предоставляет данные о более 200 000 наноматериалов и	**
	наноустройств, собранные из самых авторитетных научных	Не ограничен
	изданий	
11	Платформа Nature https://www.nature.com/siteindex/index.html	
	Более 90 естественнонаучных журналов, включая старейший и один из самых авторитетных научных журналов - Nature	Не ограничен